Innovation Union: Costs and Benefits of Innovation Policy Coordination

Teodora Borota University of Uppsala

Giammario Impullitti University of Nottingham, CEPR and LSE-CEP Fabrice Defever University of Lille and LSE-CEP

Adam Hal Spencer University of Nottingham

5th International Days of Macro and Finance

Roadmap

- 1 Introduction
- Model
- Quantitative Exercises
- Model Variants and Other Exercises
- Conclusion

Question

 What are the growth and welfare effects of innovation policy coordination across regions?

Question

- What are the growth and welfare effects of innovation policy coordination across regions?
 - ▶ Subsidy to cost of hiring scientists for R&D.

Motivation

• European Union (E.U.) serves as the policy motivation.

Motivation

- European Union (E.U.) serves as the policy motivation.
- Policy coordination:
 - ► Ever closer union,
 - ▶ Brexit.

Motivation

- European Union (E.U.) serves as the policy motivation.
- Policy coordination:
 - Ever closer union,
 - Brexit.

- Innovation policy: Horizon Europe (2021–2027)
 - ► Funding of €95.5b for R&D grants across the union.
 - ▶ Single innovation market.
 - ► Builds-off Horizon 2020 (2014–2020): budget €80b.

(i) Document empirical facts on asymmetries in innovation performance and policy across the ${\sf E.U.}$

- (i) Document empirical facts on asymmetries in innovation performance and policy across the E.U.
- (ii) Develop a general two-country Schumpeterian growth model:
 - ▶ West (W, old E.U. members) and East (E, new E.U. members).
 - Firms compete in quality for market leadership.

- (i) Document empirical facts on asymmetries in innovation performance and policy across the E.U.
- (ii) Develop a general two-country Schumpeterian growth model:
 - ▶ West (W, old E.U. members) and East (E, new E.U. members).
 - ▶ Firms compete in quality for market leadership.
- (iii) Calibrate to E.U. data and run policy experiments.
 - ▶ Observed subsidy rates v.s. coordinated.
 - Uncoordinated subsidy rates v.s. coordinated.
 - ► Steady state and transition dynamics exercises.

• Two model variants:

- Two model variants:
 - (a) Baseline: semi-endogenous (Jones 1995 JPE) growth.
 - Policy has only transitional effects on growth.

- Two model variants:
 - (a) Baseline: semi-endogenous (Jones 1995 JPE) growth.
 - Policy has only transitional effects on growth.
 - (b) Add FDI and knowledge spillovers through multinational activity.

Qualitative Channels

• Consider moving to the optimal coordinated subsidy rates.

Qualitative Channels

• Consider moving to the optimal coordinated subsidy rates.

- Four key externalities
 - a. Strategic motive: business-stealing gives over-investment in R&D.
 - b. Inter-temporal effect: under-investment.
 - c. Diversification: decreasing returns at country-level.
 - d. Consumer surplus: price *level* effects from innovation.

Preview of Results

- Baseline: internalising strategic and diversification dominates inter-temporal effect.
 - ▶ Gains to coordination are large.
 - \blacktriangleright Optimal coordinated rates -39% and 59% for W and E respectively.
 - ▶ Rates are 12% and 10% in the data.

Preview of Results

- FDI extension: transfer of knowledge reverses the result.
 - ▶ Inter-temporal effect dominates.
 - ▶ Optimal coordinated rates 33% and -99%.
 - ▶ 7.5% welfare gains in consumption equivalents.

Preview of Results

• Model variants highlight the important role of knowledge spillovers in shaping coordination gains and key externalities.

Roadmap

- Introduction
- 2 Model
- Quantitative Exercises
- Model Variants and Other Exercises
- Conclusion

World

• World with two countries: W and E.

• Continuous time.

• Trade in goods.

• Set of consumed good same across countries.

• Representative households; populations grow at rate *n*. Details

World

ullet Horizontal differentiation: continuum of varieties (denoted $\omega \in [0,1]$).

Vertical differentiation: vintages of each variety.

- Only the top quality vintage consumed in each variety.
 - ▶ Production controlled by firm from either *W* or *E*.

• Innovation arrival gives $\lambda > 1$ jump in quality.

- \bullet Potential entrants i challenge incumbents on each variety.
 - ► Creative destruction

- Potential entrants *i* challenge incumbents on each variety.
 - Creative destruction

Arrival rate production function

Productivity for
$$K$$

$$\underbrace{I_i^K}_{i} = \underbrace{(A^K)^{1-\alpha}}_{\text{Research emp. firm } i} \underbrace{\ell_i^K}_{\text{Research emp. firm } i}^{\text{Research emp. in } K}$$
Research emp. in K

for country $K \in \{W, E\}$.

- Potential entrants *i* challenge incumbents on each variety.
 - Creative destruction

Arrival rate production function

Productivity for
$$K$$

$$\underbrace{I_i^K}_{i} = \underbrace{(A^K)^{1-\alpha}}_{\text{Research emp. firm } i} \underbrace{\ell_i^K}_{\text{Research emp. firm } i} \underbrace{(L^K)^{-\alpha}}_{\text{Research emp. firm } i}$$

for country $K \in \{W, E\}$.

ullet Decreasing returns in research employment $L^K\colon oldsymbol{lpha} \in (0,1)$

• Productivity country $K \in \{W, E\}$

• \widehat{Q}^K is country-specific average of aggregate quality from each K.

• Productivity country $K \in \{W, E\}$

$$\underbrace{A^K}_{\text{Innov. productivity}} = \overbrace{\gamma^K}_{\text{Knowledge spillovers}} \underbrace{\left(\widehat{Q}^K\right)^\phi}_{\text{Knowledge spillovers}} \underbrace{\left(\widehat{Q}^K\right)^\phi}_{\text{Quality of variety leader}}$$

- \widehat{Q}^K is country-specific average of aggregate quality from each K.
- $\phi < 1$: semi-endogenous growth
 - ▶ Decreasing returns to knowledge spillovers

Knowledge spillovers affecting R&D productivity:

$$\widehat{Q}^K(t) = \underbrace{Q^K(t)^\beta}_{\text{Knowledge spillovers}} \underbrace{Q^K(t)^\beta}_{\text{Local quality aggregate}} \underbrace{Q(t)^{(1-\beta)}}_{\text{Global quality aggregate}}$$

where

$$egin{aligned} Q(t) &= \int_0^1 q(\omega,t) d\omega \ Q^K(t) &= \int_{\omega \in \omega^K} q(\omega,t) d\omega. \end{aligned}$$

• Parameter $\beta \in [0.5, 1]$ captures local bias.

Subsidy Instruments

• Subsidy to wage bill of hiring scientists $s^{K} \in [0,1]$.

• Scientist wage bill post-subsidy:

$$(1 - s^K) \underbrace{\ell_i^K w^K}_{\text{Scientist wage bill firm } i}$$

Equilibrium Innovation

• Potential entrants maximise expected profits

$$\max_{\substack{I_i^K \\ P\text{resent value of incumbency}}} \frac{I_i^K}{I_i^K} \frac{\mathbf{v}}{\mathbf{v}} - (1 - s^K) \ell_i^K \mathbf{w}^K$$

subject to arrival rate production function.

Incumbent value

Equilibrium Definition

- Equilibrium is a set of endogenous aggregate objects such that
 - ▶ Households optimise in each country Show,
 - ▶ Potential entrants make zero expected profits in each country Show,
 - ► Labour markets clear in each country Show,
 - Aggregate growth determined by innovation intensity in each K and quality improvement λ Show.

Roadmap

- Introduction
- Model
- Quantitative Exercises
- Model Variants and Other Exercises
- Conclusion

Exercise Design

- Observed scenario
 - ▶ Equilibrium with subsidies fixed at rates in the data.

Exercise Design

- Observed scenario
 - ▶ Equilibrium with subsidies fixed at rates in the data.

- Coordinated scenario:
 - ▶ Choose 2 subsidy rates to maximise total E.U. welfare.

Exercise Design

a. Steady state exercises.

- b. Transition exercises:
 - Initial steady state at observed subsidy rates.
 - \triangleright Set alternative counterfactual rate once and for all at t=0.
 - ▶ Map transition path to counterfactual steady state.
 - ▶ Account for transition path in welfare computations.

Optimal R&D Subsidy Rates

	Transition $s^W s^E$		Steady State s^W s^E		
Observed	0.12	0.10	0.12	0.10	
Coordinated	-0.39	0.59	-0.99	0.55	

Gains from Coordination

	Transition			Steady State		
	W	Ε	EU	W	Ε	EU
Coordinated vs observed	-0.07	0.23	0.16	-0.09	0.41	0.32

Gains from Coordination

	Transition			Steady State		
	W	Ε	EU	W	Ε	EU
Coordinated vs observed	-0.07	0.23	0.16	-0.09	0.41	0.32
Strategic motive	0.02	0.32	0.34	0.02	0.51	0.53

Gains from Coordination

	Transition			Ste	eady St	ate
	W	Ε	EU	W	Ε	EU
Coordinated vs observed	-0.07	0.23	0.16	-0.09	0.41	0.32
Strategic motive	0.02	0.32	0.34	0.02	0.51	0.53
Consumer surplus effect	-0.06	-0.06	-0.12	-0.11	-0.11	-0.22

Gains from Coordination

	Transition			Steady State		
	W	Ε	EU	W	Ε	EU
Coordinated vs observed	-0.07	0.23	0.16	-0.09	0.41	0.32
Strategic motive	0.02	0.32	0.34	0.02	0.51	0.53
Consumer surplus effect	-0.06	-0.06	-0.12	-0.11	-0.11	-0.22
Intertemporal spillovers	-0.03	-0.03	-0.06	0.00	0.00	0.00

Roadmap

- Introduction
- Model
- Quantitative Exercises
- 4 Model Variants and Other Exercises
- Conclusion

Model Variants and Other Exercises

1. FDI: include multinationals. Show

2. Policy Horizons. Show

Roadmap

- Introduction
- Model
- Quantitative Exercises
- Model Variants and Other Exercises
- Conclusion

• What are the gains to innovation policy coordination?

- What are the gains to innovation policy coordination?
- Develop a quantitative framework:
 - ► Can study steady states and the transition.
 - ▶ Extended to include knowledge transfer through multinationals.

- What are the gains to innovation policy coordination?
- Develop a quantitative framework:
 - ► Can study steady states and the transition.
 - ▶ Extended to include knowledge transfer through multinationals.
- Gains are lower when accounting for the transition.

- What are the gains to innovation policy coordination?
- Develop a quantitative framework:
 - ► Can study steady states and the transition.
 - ▶ Extended to include knowledge transfer through multinationals.
- Gains are lower when accounting for the transition.
- Takeaways:
 - Spillovers matter!
 - Gains are large: 7% in FDI variant.

• W leaders can offshore production to save on manufacturing costs.

• W leaders can offshore production to save on manufacturing costs.

- Product cycles
 - ▶ Ideas start in W ($\omega \in \omega^W$),
 - ▶ W firms choose to offshore as multinationals ($\omega \in \omega^M$),
 - ▶ Once offshored, E can start innovating on that variety,
 - ▶ *E* leadership $(\omega \in \omega^E)$,
 - W leadership.

• Innovation productivity terms for sector $K \in \{W, M, E\}$

$$A^{W} = \gamma^{W} \widehat{Q}^{W}(t)^{\phi} q^{-1}$$

$$A^{M} = \gamma^{M} \widehat{Q}^{W}(t)^{\phi} q^{-1}$$

$$A^{E} = \gamma^{E} \widehat{Q}^{E}(t)^{\phi} q^{-1}$$

• Innovation productivity terms for sector $K \in \{W, M, E\}$

$$A^W = \gamma^W \ \widehat{Q}^W(t)^\phi \ q^{-1}$$
 $A^M = \gamma^M \ \widehat{Q}^W(t)^\phi \ q^{-1}$
 $A^E = \gamma^E \ \widehat{Q}^E(t)^\phi \ q^{-1}$

where

$$\widehat{Q}^W(t) = Q^W(t)^{\beta} Q(t)^{1-\beta}$$

$$\widehat{Q}^E(t) = Q^{E+M}(t)^{\beta} Q(t)^{1-\beta}$$

and

$$Q^{E+M}(t) = \int_{\omega \in \omega, M_{1}, \omega, E} q(\omega, t) d\omega.$$

Addition of FDI: Results

	Baseline			٧	DI	
	s^W	sE		s^W	s ^E	
Observed	0.12	0.10				
Coordinated	-0.39	0.59				
Welfare gains	W	Е	W+E	W	Е	W+E
Coordinated vs observed (CEV)	-0.07	0.23	0.16			
Strategic motive	0.02	0.32	0.34			
Consumer surplus	-0.06	-0.06	-0.12			
Intertemporal spillovers	-0.03	-0.03	-0.06			

All inclusive of transition

Back to extensions

Addition of FDI: Results

		Baselin	e	V	Vith F)I
	s^W	s ^E		s ^W	s ^E	
Observed	0.12	0.10		0.12	0.10	
Coordinated	-0.39	0.59		0.33	-0.99	
Welfare gains	W	Е	W+E	W	Е	W+E
Coordinated vs observed (CEV)	-0.07	0.23	0.16	0.05	0.02	0.07
Strategic motive	0.02	0.32	0.34	-0.01	-0.04	-0.05
Consumer surplus	-0.06	-0.06	-0.12	0.00	0.00	0.00
Intertemporal spillovers	-0.03	-0.03	-0.06	0.06	0.06	0.13

All inclusive of transition

Back to extensions

Fully Endogenous Variant: Model

• Remove decreasing returns to knowledge spillovers:

with $\phi = 1$.

• Also some adjustment to arrival rate production function.

Fully Endogenous Variant: Results

	Baseline			Fully	enous	
	s ^W	s ^E		s ^W	s ^E	
Observed	0.12	0.10				
Coordinated	-0.39	0.59				
Welfare gains	W	Е	W+E	W	Е	W+E
Coordinated vs observed (CEV)	-0.07	0.23	0.16			
Strategic motive	0.02	0.32	0.34			
Consumer surplus	-0.06	-0.06	-0.12			
Intertemporal spillovers	-0.03	-0.03	-0.06			

All inclusive of transition

Fully Endogenous Variant: Results

	Baseline			Fully endogenous		
	s^W	s ^E		s^W	s ^E	
Observed	0.12	0.10		0.12	0.10	
Coordinated	-0.39	0.59		0.83	0.83	
Welfare gains	W	E	W+E	W	E	W+E
Coordinated vs observed (CEV)	-0.07	0.23	0.16	0.07	0.07	0.14
Strategic motive	0.02	0.32	0.34	-0.15	-0.15	-0.30
Consumer surplus	-0.06	-0.06	-0.12	0.00	0.00	0.00
Intertemporal spillovers	-0.03	-0.03	-0.06	0.22	0.22	0.44

All inclusive of transition

Zero Profit Condition

Gain in success Rate of success
$$\underbrace{v^K(\omega,t)}_{\text{Expected gain to innovation}} \underbrace{A^K(\omega,t)I^K(\omega,t)^{\frac{\alpha}{\alpha-1}}}_{\text{Cost of innovation}} = \underbrace{(1-s^K)w^K(t)}_{\text{Cost of innovation}}$$

Back to equilibrium definition

Labour Market Clearing Conditions

Manufacturing labour demand in W

$$\underbrace{\ell^{W}_{\text{Labour supply in W}}} = \underbrace{\left(\frac{\sigma}{\sigma-1}\right)^{-\sigma} a^{W(1-\sigma)} q^{W} \left(\frac{c^{W}\ell^{W}}{\bar{p}W(1-\sigma)} + \frac{c^{E}(1-\ell^{W})}{\bar{p}E(1-\sigma)} \tau^{W(1-\sigma)}\right)}_{+\frac{I^{W}\frac{1}{1-\alpha}}{\gamma^{W}}} \underbrace{\frac{Q(t)}{\widehat{Q}W(t)\phi I(t)}}_{+\frac{Q(t)}{\bar{p}W(t)\phi I(t)}}$$

Innovation labour demand in W

Back to equilibrium definition

Additional Terms in Household Budget Constraint

Government budget constraint

$$T^{K}(t) = \underbrace{s^{K}w^{K}(t)\int_{0}^{1}L_{R}^{K}(\omega,t)}_{\text{Total expenditure on R&D by firms from }K}$$

Asset holdings:

$$A^{K}(t) = \int_{\omega^{K}} \frac{v^{K}(\omega, t)}{L^{K}(t)} d\omega$$

Back to household

Innovation

Present value of incumbency

$$v^{K}(\omega, t) = \frac{\overbrace{\pi^{K}(\omega, t)}^{\text{Period profits}}}{r(t) + \underbrace{I^{W}(\omega, t) + I^{E}(\omega, t)}_{\text{Schumpeterian creative destruction}} - \frac{\dot{v}^{K}(\omega, t)}{v^{K}(\omega, t)}$$

Innovation

Present value of incumbency

$$v^{K}(\omega, t) = \frac{\frac{r^{K}(\omega, t)}{r(t) + I^{W}(\omega, t) + I^{E}(\omega, t)} - \frac{\dot{v}^{K}(\omega, t)}{v^{K}(\omega, t)}}{\frac{\dot{v}^{K}(\omega, t)}{v^{K}(\omega, t)}}$$
Schumpeterian creative destruction

where

$$I^K(\omega,t) = \sum_{i} I_i^K(\omega,t) \stackrel{\text{By symmetry}}{=} I^K(t)$$
Over firms i in sector

Profits

Preference, production parameters & labour cost

$$\pi^K(\omega,t) = \frac{1}{\sigma} \left(\frac{\sigma}{\sigma-1} \right)^{1-\sigma} (a^K w^K(t))^{1-\sigma} \underbrace{g(\omega,t)}_{ ext{Incumbent's quality}}$$

$$\left(\underbrace{\frac{c^{K}(t)L^{K}(t)}{P^{K}(t)^{1-\sigma}}}_{\text{Demand from market }K} + \underbrace{\frac{c^{K*}(t)L^{K*}(t)}{P^{K*}(t)^{1-\sigma}}\tau^{1-\sigma}}_{\text{Demand from market }K*}\right)$$

Back to equilibrium innovation

Household

Lifetime utility

$$U = \int_0^\infty \underbrace{L_0}_{\text{Starting population}} \underbrace{e^{-(\rho - n)t}}_{\text{Instantaneous utility}} \underbrace{\log[u(t)]}_{\text{Instantaneous utility}} dt$$

Household

Lifetime utility

$$U = \int_0^\infty \underbrace{L_0}_{\text{Starting population}} \underbrace{e^{-(\rho - n)t}}_{\text{Instantaneous utility}} \underbrace{\log[u(t)]}_{\text{Instantaneous utility}} dt$$

with

$$u(t) = \left(\int_0^1 \left[\sum_{j=0}^{\mathsf{Top \ quality \ vintage}} \underbrace{\sum_{j=0}^{\mathsf{per \ capita \ consumption}} \underbrace{\int_0^{\sigma-1}}_{\lambda > 1 \ \mathsf{quality \ jump}} \right]^{\frac{\sigma-1}{\sigma}} d\omega \right)^{\frac{\sigma}{\sigma-1}}$$

where $\sigma > 0$ elasticity of substitution.

Household

• Supply unit labour endowment inelastically.

Budget constraint

$$\dot{A}(t) = \underbrace{w(t)}_{\text{Labour income}} + \underbrace{r(t)A(t)}_{\text{Nominal expenditure per capita}} + \underbrace{r(t)A(t)}_{\text{Pop. growth }n} - \underbrace{T(t)}_{\text{Taxes}}$$

Setup

Households

- Choose vintage with lowest price per unit of quality: $j^{max}(\omega,t)$.
- · Love of variety demand curves

$$d(\omega,t) = \underbrace{q(\omega,t)}_{\text{Quality of } j^{\text{max}}(\omega,t)} \underbrace{p(\omega,t)^{-\sigma}}_{\text{P}(\omega,t)} \underbrace{\frac{c(t)}{P(t)^{1-\sigma}}}_{\text{CPI}}$$

Households

- Choose vintage with lowest price per unit of quality: $j^{max}(\omega,t)$.
- · Love of variety demand curves

$$d(\omega,t) = \underbrace{q(\omega,t)}_{\text{Quality of } j^{max}(\omega,t)} \underbrace{p(\omega,t)^{-\sigma}}_{\text{CPI}} \underbrace{\frac{c(t)}{P(t)^{1-\sigma}}}_{\text{CPI}}$$

Consumption Euler equation

$$\frac{\dot{c}(t)}{c(t)} = r(t) - \rho$$

Equilibrium definition

Growth rate

• Aggregate growth

$$rac{\dot{Q}(t)}{Q(t)} = (\lambda^{\sigma-1}-1)(I^W(t)+I^E(t))$$

• Semi-endogenous structure implies steady state growth:

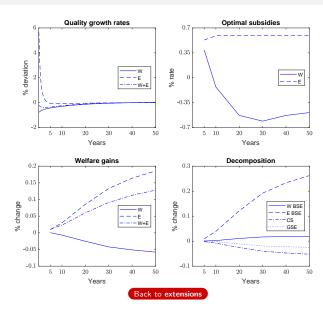
$$\frac{\dot{Q}(t)}{Q(t)} = \frac{n}{1 - \phi}$$

Equilibrium definition

Moments

Moments	Data (Model)	Source
East relative wage (w^E)	0.60 (0.61)	Eurostat, 2005-2016
MFP growth rate	0.66% (0.66%)	OECD 2005-2016
Share of sectors, West leadership (ω^W)	91% (91%)	OECD*, 2005-2016
West R&D expenditure/GDP	3.87% (3.04%)	Eurostat, 2015
East R&D expenditure/GDP	2.12% (1.85%)	Eurostat, 2015
West share of labour in R&D	3.13% (3.71%)	Eurostat, 2015
East share of labour in R&D	2.22% (4.33%)	Eurostat, 2015
West innovation elasticity to subsidy	[0.7, 3.5] (1.23)	Akcigit et al. (2018)
East innovation elasticity to subsidy	[0.7, 3.5] (1.60)	Akcigit et al. (2018)

^{*} Analytical Activity of Multinational Enterprises database. Gives output of countries by ownership of firms.


Back to Quantitative

Some Parameters

Calibrated parameters	Value
Innovative R&D productivity parameter, West (γ^W)	0.20
Innovative R&D productivity parameter, East (γ^E)	0.10
Spillover parameter (β)	0.60
Quality jump size (λ)	1.80
Decreasing returns (α)	0.20
Spillovers curvature (ϕ)	0.70

Back to Quantitative

Gains from Coordination: Dynamics

